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The acoustic response due to a point source in a liquid layer

overlying a semi-infinite multi-layered viscoelastic medium is obtained

using a Green's function formalism. A matrix recurrence relation,

developed from the boundary conditions, is used to relate the scalar

wave functions in the last visccelastic layer to the scalar wave functions

in the intermediate layers using �x4! matrix manipulations. The trans-

formed form of the Green's function is then obtained by applying appropriate

boundary conditions at the top and bottom of the liquid layer. The Green's

function is then written in integral form convenient fox computer evaluation,

since the integrand can be computer for many layers using the recurrence

relation. Special cases are discussed and compared with known results.



ACKNOHLEDGEMENTS

The UNH-Raytheon project team of faculty, students and industrial

colleagues are grateful to the National Sea Grant Program for support and

encouragement of this research project, through Grant No. DC 1-36114. Zn

addition to the acknowledgements at the end of the report, the authors

wish to acknowledge the financial support from the Raytheon Company, the

University of New Hampshire and the National Science Foundation. One of

the authors  Gary K. Stewart! received support as a NSF trainee for the

National Science Foundation.

This paper was presented at and published in the Proceedings of

the Ocean '72 IEEE International Conference on Engineering in the Ocean

Environment, at Newport, Rhode Island, September 13 - 15, 1972.

Robert w. corell � Project Manager

A. S. Westneat � Raytheon Project Manager

hsim Yildiz - Technical Director



SOUND PROPAGATION IN A LIQUID LAYER OVERLYING A MULTI-LAYERED VISCOELASTIC HALFSPACE

Allen H. Magnus on

Gary K. Stewart

Mechanics Research Laboratory
The University of New Hampshire

Abstract

Introduction

OCEAN '72 � 531

The acoustic response due to a point source in a
liquid layer overlying a semi-infinite multi-
layered viscoelastic medium is obtained using a
Green'e function formalism. A matrix recurrence
relation, developed f rom the boundary conditions,
is used to relate the scalar wave functions in
the last viscoelastic layer to the scalar wave
functions in the intermediate layers using �><4!
matrix manipulations. The transformed form of
the Green's function is then obtained by apply-
ing appropriate boundary conditions at the top
and bottom of the liquid layer. The Green's
function is then written in integral form con-
venient for computer evaluation, since the inte-
grand can be computed for many layers using the
recurrence relation. Special cases are discussed
and compared with known results.

The first paper of this series treated the
acoustic response of a semi-infinite liquid over-
lying a homogeneous viecoelastic halfspace
 Ref. I!, This paper treats the more general
case of a point source in a liquid layer of
finite depth overlying a series of n parallel
layers of a viecoelasti.c solid  Fig, l!. Each
layer has arbitrary density pj, and complex vel-
ocities of wave propagation Oj and g|. This
model corresponds rather closely to the strati-
fication of sediments on the continental shelf.
Each subbottom layer is assumed to be a homo-
geneous, isotropic Voigt solid, described mathe-
matically in the main text of this paper.

This problem and closely related problems have

 ~! 5l~qn sgudied by numerous investigators �! > �! ~
~ . Jardetsky�!, developed the period

equation or dispersion relation for a layered
elastic halfspace with a point source in the
first layer. The period equation was expressed
as a determinant of order �n-2!, where n was
the number of elastic layers. He could not ob-
tain the roots of the period equation explicitly
due to the algebraic complexity, but he did make
an important observation. This was that, of all
the 2n branch paint singularities, only the two
branch line integrals corresponding ta the twa
branch points of the last  semi-infinite! layer
contribute to the response. Thus, the total re-
sponse consists of a residue series  each term

of which corresponds ta a solution of the period
equation! and contributions due to branch line
integrals for the branch point singularities of
the last  semi-infinite! layer.

Thomson used a matrix formalism for determining�!

the transmission of plane elastic waves through a
stratified solid medium, He developed a recur-
rence relation relating the velociti.es and stres-
ses in adjoining plates or layers using Snell's
law and continuity of particle velocities and
stresses at the interface. Successive application
of the recurrence relation enabled him to relate
the velocities and stresses at the last plate in
terms of those of the first plate. Shaw and
Bugl'�! pointed out that Thomson used the unneces-
sarily restrictive assumption that the shear
modulus was constant in all the layers. They also
mention that Haekell�! was apparently the first
to remove this restriction.

Shaw and Bugl refined the approach of Refs. �!
and �! by expressing the displacements and
stresses in terms of the layer's parameters and
then used a more direct matrix formalism. In
addition, they considered the effects of viecoe-
lasticity by treating the elastic constants I and
u as complex quantities.

The present paper closely parallels the approach
of Ref. �!, except that the first layer is taken
to be a liquid, This enables us to express the
response due to the point soqrcq peing a scalar
Green's function formalism  > < >. We depart
from Ref. �! to develop a recurrence relation
between the coefficients of the scalar potentials
of adjacent viscoelastic layers by applying boun-
dary conditions at the interface. Successive
applicatian of the recurrence relation then
enables us to express the coefficients of the
first solid layer in terms of the last layer.
Finally, boundary conditians are applied at the
top and bottom of the liquid layer to obtain the
solution for the response in the liquid, The
advantage of this approach ie that computations
involve 4><4 matrices instead of matrices of order
�n-2!, where n is the number of solid layers,
This makes the formalism ideal for machine compu-
tation.

The recurrence relation developed here differs
from that of Refs. �!, �! and �! in that the
problem treated is three-dimensional end the
recurrence relation involves coefficients of
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scalar potentials instead of displacements and
stresses.

The governing equation in the liquid with a point
source at r 0, z z' [Fig. �!] is taken from
Eq,  A-2! of the preceding paper �!,

-+ + +»
 V + k !  r i r', m! = -6  I-r'!

whe.e 6 r-r ! - ""'-"'
2'F I

The quantities G and cp are the Green's function
and the liquid's speed of sound  adiabatic!,
respectively. The symbol 6 is Dirac's delta
function. A time dependence of the form ei<t

is taken throughout, and i.s omitted for brevity.
thThe governing equations for the j � viscoelastic

layer may be written

2»' 2»'
pmu +pVu +  !+p!V V ~ u!-0

where p, u, p, 1 are the layer's density,
displacL[menk anh Lail parameters. We introduce
Voigt viscoelasticity by writing the Lame para-
meters in the frequency domain as

Following Ref. �!, Eq. �! reduces to two
scalar Helmholtz equations:

the speed of the dilatational wave a and the
shear wave 8 are given by

1'+2p'+in X''+2u''!
Q

The displacements may be written as

and e is the unit vector in the z-direction,
z

Solutions to Eqs.  I! and �! may be obtained
conveniently using a Fourier-Beesel transform

The lower bar denotes a transformed quantity.
Applying the trans formation � � a! to Eq. �!
results in the following differential equation

[
d 2

2 -6 z-z !1
� � a G g,z,z'! =
d 21r

2 2
where a 4 � k

0 0

We write solutions to Eq. �! above and below the
source as

-az az
G = Pe + pe z'<z<h

0

� az az
G =Re +Se,0<z<z �-b!

We may eliminate three of the unknowns in Eqs. I6I
using the continuity and jump condition at z=z 7

and by noting that the pressure, which is propor-
tional to G, vanishes at z hp. Eqs. �-a and b!
may then be written as

G 4 A sinh[ap h -z!] - 2 sinh[ap z'-z!]"0
0

� � c
A

and G ~ sinh[ap hp-z! ]
0

where A is an unknown, as yet, function of 4 to
be determined frOm the baundary conditiOns at z~p.

Solutions to Eqs. �-a and b! may be written in
transformed form as



2 � k?Bj � 0 � B
 8-d!

and h  < z < hj, We note that the ~ semi-th
j-1!

infinite layer has only two terms, as Bn = 0,
D 0, because the potentials must remain
finite as z ~ ~. This implies that the A and
C tersm in Eqs. �! represent downward-
traveling waves and the B and Dj terms represent
upward-traveling we~as. ft follows that the
stipulation that B =D =0 is essentially a

n n
radiation condition.

Bu
2a

zz Bz  8-e!

and
r z2t ~ � +-

rz Bz Br  8-f!

Bounds Conditions

We must evaluate the 4n-2 functions Aj, B~, Cj,
Dj, j = 1, 2, ... n in Eq. �!. We do thereby
applying boundary conditions at each interface
between solid layers. We first express the dis-
placements and stresses in terms of the poten-
tials. The displacements in a cylindrical
 r, z, 8! coordinate system may be written
 taking into account the 8-symmetry! as ii! u , ~ u

rj r j+1!

iii! a = a
rzj rz  j+1!

 9-b !

B B~B
� �+ !,Br cx Bz

 9 � c! 8 � a!

B$ 2
+  kB + 2�B2 Bz
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 8 � b!u
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a
aj

and A  1! is a �wl! column matrix
 j+1!, j

We write the stress tensor as

0 - leigh + 2'

where 2 is the strain tensor and 6 is the
ik

Kronecker delta. We need the stress components
a and o, whose corresponding strains arezz zr
written as

The boundary conditions are continuity of stress
and displacements at the interface. The first
follows from the dynamic equations of motion.
The second follows from the conservation of mass.
For the jth interface, we write

i! u -u at z=-h
zj z j+1!

 9-a!

II
zzj z2  j+1!

Applying Eqs.  8! to  9! gives a system of equa-
tions that may be written in matrix form as

[aj] Aj j � � [a j+1!] A j+l!,j
where [a.] is a 4x4 matrix given as:

J

2 2 2 2
'PjSj Bjl PjBj

2 2 2 2 2 2P B �g -kB ! P B �t; -kB



where

aj' j

[A, ]=  ll-c!

'Rj' j

and

aj'

aj'

A A Cn n= m � +m
a ll a 13 a

al am Hn
A

�1-d!C

'Hj '

B A C
n nm + ma 21 a 23agal an Bn

�3-c!
C A C

n nm � + mag 31 a 33 ag

D A C
n n= m � +m

e 41 a 43 a
an gn�2!

We may define

+

 j+1!, j  j+1!
�2-c!

�4-b!ii! u = u
0 1

and iii! a ~ 0
rzi

�4- c!

�3!

�3-a!

A = [M] A
1 n

�3-b !
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One may express A, as A, = [A, ]A
r 7

We now may write Eq. �0! as

[a ][A ]A = [e,][A r JA

Eq. �2! is a recurrence relation relating the
coefficients of the /th layer to the j '  j+I!�
layer. Solving for A gives

A = [A., ] [a ] [a,] [A, ]A, . �2-a!
j

lb r ] = [A .] [a] [a., ][A., ], �2b!
j,j

which allows Eq, �2! to be written in a simpler
f orm:

One may apply the recurrence relation �2-c! suc-
cessively to eliminate the coef ficients of
intermediate layers. In particular, one may
express the coefficients of the first layer  j 1!
to those of the last layer  j=n! as a product

  n-1
Al H [b  %+I! R]! A

where we may set

n-1

[M] = JI [b R,+I! f ]
f.= 1

where [M] is a �x4! matrix, so

We recall that the second and fourth elements of
are zero due to e redietl.on condition. If one

n
denotes the elements of [M] as mik, one may ex-
pand Eq. �3-b! as follows:

Eq. �3-c! relates the four coefficients of the
first solid layer to the two coefficients of the
last solid layer by means of the elements of the
[M] matrix. The elements of the [M] matrix can
be computed as a function of g knowing the den-
sities and wave numbers of the viscoelastic
layers.

Now one mey relate the four coefficients of the
first solid layer to the unknown coefficient AO
[Eq. �!] of the liquid layer by applying boun-
dary conditions at the liquid-solid interface z=O.
We write

i! a = -p = a at z 0, �4-a!
zz0 0 zz

where pO is the liquid pressure given as
2 -+

p = -p v G for r rr r'. Using Eqs.  8! in �4!
0 0

results in the matrix relation:



a cosh a h'
al al

plB1 �g -k !2Om sinh a hp0 0
p 5 �t;-k !

2 2 2

2aal
2a

al

ap

Al

al
a cosh a z'

Bi

al 2

0
p e sinh a z2

0
Cl

Bl

Di

Bl

Applying the result �3-c! to Eq. �5! gives

12 13a cosh a h

2 sinh a h 2

ap
�6!

where
1 22 33 32 23

2
ll 11 21 al 31 41 and

2 2 2b = p B �|; � kB !  ll+m21!� 2 12 33 1332

Substituting the result �7! into the expression
for the Green's function [Eq. �! ] yields2 2� 2p B q aB  m31-m41!

2 2
b 32 -2a 1 11"21 + �C -kBil "31 41 G g,z,z'! = 4 sinh[ap hp+z !]

0
2

13 13 23 al 33 43 K a cosh apz � K2pp< sinh apz !!2

X
2 2 2

b23 piBi �~ kg 1!   13 23
2K a cosh aphp! K2ppm sinh a h !

�8!
2

1 1 Bl 33 43 where z! Max z,z'! and z  Min z,z'!. Vsing
the symbolism z» z  combines the two expressions
Eqs, � a and b! for ~G and G  into one due to
reciprocity. We note that the period equation is
obtained by setting the denominator of Eq. �8!
to zero, or from Eq. �7-b!

2 2b33 -2aal 13 m23 + �< -kB1! m33 43!
Eq. �6! using Cramer's

�7! ~ 0.
0

The actual Green's function G r,z,z',tu! is ob-
tained by taking the inverse transform of
Eq. �8! using Eq. �-b!

G r,z,z',h!! ~ i G C,z,z',to! J  <r!<d< . �8-a!
s

cosh a z'! � K p u! sinh a z'!, �7-a!

= K a cosh a h ! � K ppuj sinh aphp!, �7-b!2
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We may solve
rule

2
A
0 ap

where

'22 '23

'32 '33

for A from

I

Ap/ap

A /an an

2 2
-»1Bi~ aB1

�|; -k! !

a cosh a z'

2tu sinh apz'

0

2 2
2pigi< sB1

�0 -kB1!2 2



S ecial Cases

1! One viscoelastic la er  n~l!. Here we set in
Eq, �3-c! m = m = 1 and the other m - 0.
The Green's unction reduces to G g,z,z' p.33 ,i!

2 � a0[�< -k ! -4a a8 r; ]cash a0z ! � a k81sinh a0z !
sinh [a0 h +zp] 0 0  al 81

p 0 81 al 81� a [�< -k8 ! � 4a la lt; ]cash a0h0! � a lk sinh a h !
0 0 0 al 81

�9!

G g,z,z'! =

Ka -Kpru ~02
�0-a!

a0[�< -k ! � 4a a   ]cosh a0z ! + k a lsinh a z !2 2 2 2 4
al 812  '0' !

C <,z,z'! = 4 e4rra
0

�1!

1 2 2 2
� a[�$-k!-4a a/]+ka

2 4
p0 0 81 al 81 81 al

Results and Conclusions

-a  z -z ! -a  z +z !
G r,z,z'! I

4rra0
23Ka +Kprrr

X

K a0 K p0Mr
�2!

�2-a!
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Eq. �9! agrees, af ter taking the inverse trans-
form, with Press and Ewing's < ! result for the
liquid layer over a semi-infinite elastic solid
[their Eqs. �6! and �7!]. Qur result includes
an extra 1/4rr factor that results fram the Green's
function formalism, and the notation and sign
conventions dif fer.

2! Infinite depth of liquid layer  h ~!. In
0this case Eq. �8! reduces to;

This result is the same as Eq.  A-7! of the pre-
ceding paper< !, as would be expected.

A general expression,Eq, �8!. is obtainer.,
transformed form, for the acoustic response due
to a point source in a liquid layer overlying a
multi-layered viscoelastic solid halfspace.
Special cases of the result are presented
[Eqs, �9!, �0! and �1! ] for one viacoelastic
layer, infinite liquid depth and ane viscoelas-
tic layer combined with the infinite liquid
cepth.

To obtain the actual response, one must take the
inverse transform of the expression JEq. �8! ~ al
one of its special casesj . Taking the inverse
transform requires evaluating a definite integral
af the form indi.catedg Eq, �8 aj, This inte-
gration was discussed and appraxhmte results
 leading terms in an asymptotic expansion>!!
r ere obtained for the. special case corresponding
to Eq, �1!,

The same techniques may be applied to Eq, �0}
 the infinite liquid depth. case!, as the inte~
rand is in the same. farm. The peri.od equation
Eq. �0-a!J becomes more complicated due to the

presence of solid layers between the two half-
spaces. The solid layers  plates! produce a
waveguide-like effect whi.ch manifests itself in a
residue series, each term representing one mq ~
of propagation. As pointed out by Jardetsky~

�  a0z ! K a cosh a0z !-K2p0ar sinh a0z ! /2

/ ~
0   1'0 2G0" !

�0!
Here the frequency equation is simply

3! Semi-infinite liquid over a viscoelastic
balfspace  h0~, n~l!. The Green's function
reduces to:

only twa branch line integrals will contribute to
the response, These integrals correspond to the
branch point singularities of the last viscoelas-
tic layer  a 0, a 0!,an ' 8n

In the radiation zone, the steady-state plane-
wave reflection coefficient may be. obtained fram
Eq. �0! by expanding the sinh and cosh terms ta
yield the fallowing;

The fi.rst terra in Eq. �2! is thy direct wave, as
may be seen from Sommerfeld's  o! result. The
second term represents the reflected wave. This
follows frarrr the leading term of a steepest
descent integrat/It~ of the inverse transform of
the second term, Pollawing the development of
Ref. �} gives, for the planewave reflection
coeffici.ent;

-1 rwhere $0 k0sine, e = sin   � ! is the angle of
RI
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t td *, dsl=~+ *4*'! . 0 t ttt
he reflection coeffici'ent given in Eq. �2-a!

is in a form similar to the usual impedance rela-
tion representing the reflection coefficient for
two liquids

whereZ =pc,Z =pa
I 1 1

For reasons discussed in Ref. �!, the primary
interest in our research is in the special case
corresponding ta infinite water depth. The ex-
plicit calculation of the acoustic response for
the two-layer case  n 2! using the methods of
Ref.  I! is an ambitious undertaking due to the
algebraic complexity. For three layers or more,
direct calculations become unmanageable. For
this reason, further development will be accom-
plished using machine calculations, That is,
the integrand will be evaluated for arbitrary
layers with the aid of the recurrence relation,
and the subsequent integration will be done
numerically. In addition, studies wi.ll be done
separately to find the roots of the period
equation [Eq. �0-a!].
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equation  ll-a! 2 2 2 2 2 �2 2 2

iiHi
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4ma
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0 0
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